#### Quantitätsverfahren bei Porositätsbestimmung in kohlefaserverstärkten Verbundwerkstoffen



G. Hendorfer, G. Mayr, K.-H. Gresslehner, J. Suchan

Fakultät für Technik und Umweltwissenschaften, FH OÖ

FH OÖ Forschungs & Entwicklungs GmbH • Hagenberg • Linz • Steyr • Wels



# FH OÖ Standort -Kompetenzen







# Studienangebot Wels 2013/14



|                                              | Forschung &<br>Wirtschaft                   |                          |                                                   |                                                                                |
|----------------------------------------------|---------------------------------------------|--------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|
| Klassische<br>Ingenieur-<br>wissenschaften   | Umwelt & Energie                            | Bau & Ökologie           | Wirtschafts-<br>ingenieur-<br>wissenschaften      |                                                                                |
| Automatisierungs-<br>technik<br>BSc + MSc    | Bio- und<br>UmweIttechnik<br>BSc + MSc      | Bauingenieurwesen<br>BSc | Mechatronik /<br>Wirtschaft BSc + MSc             | <b>Research Center</b><br>-Forschungszentren                                   |
| Maschinenbau<br>BSc + MSc                    | Lebensmitteltechno-<br>logie & Emährung BSc |                          | Innovation & Product<br>Management BSc +<br>MSc 🗮 | Transferzentrum<br>-Industriekooperation<br>-Sprint>lab<br>-Innovationsschecks |
| Metall und<br>Kunststofftechnik<br>BSc + MSc | Öko Energietechnik<br>BSc + MSc             |                          | Produktdesign &<br>Techn.<br>Kommunikation BSc    | Weiterbildung<br>-§ 9 Lehrgänge / Seminare<br>-Summer School                   |
| Anlagenbau<br>MSc                            | Verfahrenstechnische<br>Produktion BSc      |                          |                                                   | Gründungszentrum<br>-Inkubator<br>-Gründungsberatung                           |

FH OÖ Forschungs & Entwicklungs GmbH · Hagenberg · Linz · Steyr · Wels





### **Forschungsschwerpunkte**





#### **Nondestructive Testing** Upper Austrian University of Applied Sciences







FH OÖ Forschungs & Entwicklungs GmbH · Hagenberg · Linz · Steyr · Wels



# Delamination in a wood-plastic composite (WPC) panel



**Components:** wood flour + melamine resin

Applications: automobile industry furniture industry



Section A-A



FH OÖ Forschungs & Entwicklungs GmbH · Hagenberg · Linz · Steyr · Wels



#### Methoden der Aktiven Thermographie: Puls und Lock-In Thermographie







## Aufspüren von Fremdmaterialien



Faserverbundwerkstoff – Platte • FH OÖ Forschungs & Entwicklungs GmbH · Hagenberg · Linz · Steyr · Wels



Α

**Splice** 

Β

#### Bestimmung der Temperaturleitfähigkeit zum Nachweis von Verklebungsfehler



Splice defects in honeycomb structures Comparison: Diffusivity Imaging and X-Ray Tomography Diffusivity image Cross-section of the honeycomb structure 20 Α y-direction [Pixel] 40 60 80 Β 100 50 100 150 200 250 x-direction [Pixel] Diffusivity image X-Ray image New composite components of y-direction [Pixel] 50 aircrafts: 100 Bonding of honeycomb structures with different cell size 150 200 Plate thickness: 25 mm ! 50 300 100 150 100 200 x-direction [Pixel] x-direction [Pixel] FH OÖ Forschungs & Entwicklungs GmbH • Hagenberg • Linz • Steyr • Wels



# Bestimmung der Temperaturleitfähigkeit zur Bestimmung einer Glasfaserverteilung







# Einführung

Nachweis von Porosität mit Aktiver Thermographie







#### **Einführung** Porosität in kohlefaserverstärkten Kunststoffen







slide 13



## Wärmeleitung - mesoskopisch



Heterogenes Material mit zwei Phasen





#### Homogenisierung Repräsentatives Elementarvolumen - REV







## **Quasistationäre Betrachtung**

Abhängigkeit vom Beobachter (thermischen Welle)







## **Quasistationäre Betrachtung**

Einführung eines Kriteriums für Homogenität



Homogenitätskriterium nach J.F. Kerrisk (1971):

$$\Lambda \geq L \gg l \quad \text{ mit } \quad \Lambda = \sqrt{\frac{4}{5}} \, \pi^2 \, a \, t$$

Berechnung der charakteristischen Wellenlänge  $\Lambda$  bei der Pulsthermographie:





## Statistische Beschreibung

n-Punktkorrelationsfunktionen











$$\begin{array}{l} \varphi & T \\ \vec{E} = -\vec{\nabla}\varphi & \vec{E} = -\vec{\nabla}T \\ \vec{D} = -\varepsilon_r \cdot \varepsilon_0 \cdot \vec{\nabla}\varphi & \vec{j} = -\lambda \cdot \vec{\nabla}T \\ div \vec{D} = 0 & div \vec{j} = -\frac{\partial(\rho \cdot c \cdot T)}{\partial t} = 0 \end{array}$$

FH OÖ Forschungs & Entwicklungs GmbH · Hagenberg · Linz · Steyr · Wels





#### **Electric Field Model**







## Effektiv-Medium Theorie (EMT)

Maxwell-Garnett Approximation (MG)



MG – Approximation für ellipsoide Einschlüsse

$$(1 - \Phi) (\lambda_{\rm m} - \lambda_{\rm eff}) + \Phi \frac{\lambda_{\rm p} - \lambda_{\rm eff}}{1 + \eta \frac{\lambda_{\rm p} - \lambda_{\rm m}}{\lambda_{\rm m}}} = 0$$

Effektive Wärmeleitfähigkeit

$$\lambda_{eff} = \lambda_{m} + \Phi \left(\lambda_{p} - \lambda_{m}\right) \frac{\lambda_{m}}{\lambda_{m} + \eta \left(\lambda_{p} - \lambda_{m}\right) + \Phi \eta \left(\lambda_{m} - \lambda_{p}\right)}$$

Modellvorstellung

**Poröses CFK** 





## Effektiv-Medium Theorie (EMT)



Bestimmung des Entthermalisierungsfaktors







## Finite Elemente Methode (FEM)

Reale Strukturen aus der Röntgen-Computertomographie







#### Finite Elemente Methode Stationäre Wärmeleitungsgleichung





Laplace'sche Differentialgleichung:

$$0 = \nabla \left( \lambda \left( x, y \right) \, \nabla T \left( x, y \right) \right)$$

Berechnung der effektiven Wärmeleitfähigkeit:

$$\lambda_{\rm eff} = \frac{\langle \dot{q} \rangle \ L}{T_s} \qquad {\rm mit} \qquad \langle \dot{q} \rangle = \frac{1}{l_{\rm c}} \int\limits_{x=0}^{l_{\rm c}} \dot{q}_{\rm n} \left( x, y \right) \ dx,$$
  
FH OÖ Forschungs & Entwicklungs GmbH • Hagenberg • Linz • Steyr • Wels



#### Ergebnisse

Verifikation mit idealisierten Teststrukturen







### Ergebnisse

Vergleich von Maxwell-Garnett (MG) und FEM







### Ergebnisse

Vergleich der Wärmeleitfähigkeitsprofile von MG und FEM







slide 28



#### **Measurement Results** Thermography vs. Ultrasonic C-Scan





Pulsed Thermography: FLIR Thermacam PM695 ( $\Delta$  T = 80 mK, FPS = 25, 8 - 12  $\mu$ m) Ultrasonic C-SCAN: (inspection frequency f = 5 mHz, probe diameter = 0.75"')

FH OÖ Forschungs & Entwicklungs GmbH · Hagenberg · Linz · Steyr · Wels



### **Measurement Errors**



Pulsed Thermography versus Ultrasonic Testing

| Porosity | Thermography | Ultrasonic |
|----------|--------------|------------|
| [%]      | [%]          | [%]        |
| 2        | 0,2 3,5      | 0,9 3,0    |
| 4        | 2,65,2       | 2,7 5,2    |
| 6        | 4.9 7.0      | 4,5 7,4    |
| 8        | 7,1 8,9      | 6,3 9,5    |

FH OÖ Forschungs & Entwicklungs GmbH • Hagenberg • Linz • Steyr • Wels



## Zusammenfassung



- Die **Homogenisierung** des komplexen heterogenen Materials führt zu einem vereinfachten Wärmeleitungsmodell mit effektiven Größen.
- Die **quasistationäre Betrachtungsweise** ist zulässig, da die thermische Wellenlänge groß gegenüber dem Porenabstand ist.
- Die Mikrostrukturcharakterisierung von porösem CFK erfolgte mittels CT Messungen und der 2-Punktkorrelationsfunktion.
- Die **Modellierung** der **Wärmeleitung** in einem 2-Phasensystem wurde mit der **Maxwell-Garnett Approximation** und dem mittleren **Achsenverhältnis** der Poren durchgeführt.
- Die Verifikation der Maxwell-Garnett Approximation erfolgte durch numerische Simulation mittels der FEM und durch Vergleich von Thermografie- mit Ultraschallmessungen.



#### Danksagung





finanziert durch das Programm TAKE OFF, eine Initatitive des Bundesministeriums für Verkehr, Innovation und Technologie.

FH OÖ Forschungs & Entwicklungs GmbH · Hagenberg · Linz · Steyr · Wels