

THERMISCHE TOMOGRAFIE

DER 3D-BLICK INS BAUTEILINNERE

Dr. Günther Mayr Josef Ressel Zentrum für die thermographische ZfP von Verbundwerkstoffen FH OÖ Forschungs & Entwicklungs GmbH, Wels, Austria

www.thermo-ndt.com

ACTIVE THERMOGRAPHY

APPLICATIONS in AEROSPACE INDUSTRY

APPLICATIONS in AEROSPACE INDUSTRY

APPLICATIONS in AEROSPACE INDUSTRY

VIRTUAL WAVE CONCEPT

... more than

1 Million

detector

elements

2D Thermographic Imaging

CHEROSTEPHERON

VIRTUAL WAVE CONCEPT

Original Image п Step 1: Calculation of the virtual wave field ⁽¹⁾ Heat conduction equation Virtual temperature wave equation $\left(\nabla^{2} - \frac{1}{\alpha}\frac{\partial}{\partial t}\right)T\left(\mathbf{r}, t\right) = -\frac{1}{\alpha}T_{0}\left(\mathbf{r}\right)\,\delta\left(t\right) \qquad \left(\nabla^{2} - \frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\right)T_{\text{virt}}\left(\mathbf{r}, t\right) = -\frac{1}{c^{2}}\frac{\partial}{\partial t}T_{0}\left(\mathbf{r}\right)\,\delta\left(t\right)$ Measured Temperature source term source term Field Transformation: $\int_{-\infty}^{\infty} K(t, t') T_{\text{virt}}(\mathbf{r}, t') dt' = T(\mathbf{r}, t)$ Fredholm **Integral 1st** with: $K(t, t') \equiv \frac{c}{\sqrt{\pi \alpha t}} \exp\left(-\frac{c^2 t'^2}{4 \alpha t}\right)$ for t > 0Calculated kind Virtual Wave Field Step 2: Ultrasound image reconstruction methods **F-SAFT** (Frequency domain synthetic ٠ Reconstructed Image aperture focusing technique) **Time Reversal Techniques** ¹ Burgholzer P, Thor M, Gruber J, Mayr G. J Appl Phys **121**, 105102 (2017) UNIVERSIT

LIPPER AUSTRU

VIRTUAL WAVE CONCEPT

1D VIRTUAL WAVE FIELD

1D VIRTUAL WAVE FIELD

INFRARED DETECTORS Josef Ressel Zentrum, FH OÖ Campus Wels

	High-Resolution IR quantum detector	Standard IR quantum detector	Microbolometer IR detector	High-Speed IR quantum detector
Device	FLIR X8400 sc	IRCAM Equus 81k M Pro	FLIR PM 695	FLIR X6900 sc
Detector type	Indium Antimonide (InSb)	Indium Antimonide (InSb)	uncooled microbolometer	Indium Antimonide (InSb)
Resolution	1280 x 1024 pixels	320 x 256 pixels	320 x 240 pixels	640 x 512 pixels
Minimal pixel size	~ 5 µm	~ 40 µm	~ 80 µm	-
Sprectral range	3 to 5 µm	3 to 5 µm	7.5 to 13 µm	3 to 5 µm
Image frequency (fullframe)	106 Hz	386 Hz	50 Hz	1004 Hz

THERMAL EXCITATION SOURCES

DEPOSITE PRINCIPALITY OF THE PRINCIPALITY OF T

LASER-EXCITED THERMOGRAPHY

LASER-EXCITED THERMOGRAPHY

BREAKING THE DETECTION LIMIT

BREAKING THE DETECTION LIMIT

BREAKING THE DETECTION LIMIT

Exact solution of the **Virtual Wave Field**:

BREAKING THE DETECTION LIMIT

BREAKING THE DETECTION LIMIT

The Thermographic Rule of Thumb for Defect Detection:

DEFECT ASPECT RATIO HAS TO GREATER THAN 2

ADMM, F-SAFT and laser excitation:

DEFECT ASPECT RATIO WITH 0.5 CAN BE DETECTED!

Test Specimen

Wood Plastic Composite (WPC)

Thermal Diffusivity: $\alpha = 2 \ 10^{-7} \ m^2/s$ Thickness:

L = 3.3 mm

Experimental Setup

IR - camera: FLIR X8400sc (1280x1064)

Flash lights: Bläsing G6000Z

3D Image reconstruction with experimental data

DED STEEL

Cross section of crack

2D Thermographic measurement of the surface temperature

3D Reconstruction of the internal structure with the virtual wave concept

3D THERMO-TOMOGRAPHY

3D THERMO-TOMOGRAPHY

CONCLUSION

- Virtual wave concept allows the application of ultrasonic imaging methods for active thermography data
- For the calculation of the virtual wave field from multidimensional thermographic measurement only a 1D reconstruction is necessary
- A combination of multiple image reconstructions from different detection planes (front or back side) is possible to improve the resolution

JOSEF RESSEL CENTER THERMOGRAPHY

UPPER AUSTRIA

нановталиваси